
Hypergraph Partitioning for Parallel Iterative Solution of
General Sparse Linear Systems∗

Masha Sosonkina† Bora Uçar‡ Yousef Saad§

February 1, 2007

Abstract

The efficiency of parallel iterative methods for solving linear systems, arising from real-
life applications, depends greatly on matrix characteristics and on the amount of parallel
overhead. It is often viewed that a major part of this overhead can be caused by parallel
matrix-vector multiplications. However, for difficult large linear systems, the precondition-
ing operations needed to accelerate convergence are to be performed in parallel and may also
incur substantial overhead. To obtain an efficient preconditioning, it is desirable to consider
certain matrix numerical properties in the matrix partitioning process.

In general, graph partitioners consider the nonzero structure of a matrix to balance the
number of unknowns and to decrease communication volume among parts. The present
work builds upon hypergraph partitioning techniques because of their ability to handle non-
symmetric and irregular structured matrices and because they correctly minimize commu-
nication volume. First, several hyperedge weight schemes are proposed to account for the
numerical matrix property called diagonal dominance of rows and columns. Then, an algo-
rithm for the independent partitioning of certain submatrices followed by the matching of the
obtained parts is presented in detail along with a proof that it correctly minimizes the total
communication volume. For the proposed variants of hypergraph partitioning models, numer-
ical experiments compare the iterations to converge, investigate the diagonal dominance of
the obtained parts, and show the values of the partitioning cost functions.

1 Introduction
Although iterative linear system solution techniques require relatively little effort to parallelize,
achieving good performance may not be straightforward. Of particular importance for the perfor-
mance are the matrix-vector product and the quality of the preconditioner. While the structure of
the sparse matrix governs the former, the latter is heavily based on the matrix numerical properties
and affects the convergence behavior of the iterative method. Conversely, both factors depend on
how the sparse matrix is partitioned, which, in general, is dictated by a graph partitioning algo-
rithm employed and by the representation of a matrix in a graph form.

∗This work was supported in part by NERSC and in part by NSF under grant NSF/ACI-0305120.
†Ames Laboratory/DOE, Iowa State University, Ames, IA 50011, (masha@scl.ameslab.gov).
‡Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322

(ubora@mathcs.emory.edu).
§Department of Computer Science and Engineering, University of Minnesota, 200 Union Street S.E., Minneapolis,

MN 55455, (saad@cs.umn.edu).

1

The first step in representing the pattern of a matrix is often to symmetrize it, so that an
undirected graph is obtained Then, each equation and corresponding unknown is represented by
a vertex and each nonzero entry is represented by an edge between the vertices it couples. This
“symmetric” graph representation is widely used by a variety of graph partitioners, such as Chaco
[21], Distributed Set Expansion (DSE) [34], and MeTiS [23]. By attempting to minimize edge
cuts, these algorithms may reduce the length of the boundary part but not necessarily the number
of communications, as shown, e.g., in [19]. This could be detrimental to the parallel overhead
since establishing an extra communication is typically more expensive than exchanging larger
volumes of data at once.

Bipartite graph [19] and hypergraph [8] models have become common tools to partition gen-
eral sparse matrices. These models can represent non-symmetric matrices and can produce non-
symmetric partitions, e.g., a different partition for the rows (equations) and columns (unknowns).
Traditionally, the corresponding partitioning techniques target minimizing communication over-
head while maintaining load balance during parallel execution of communication-intensive (fine
grain) computations such as matrix-vector multiplies, which has been studied in [8, 44].

The effect of the hypergraph partitioning on the convergence of iterative methods, however,
is more difficult to capture. This task requires considering not only the sparsity pattern of a matrix,
but also its numerical properties. In particular, parallel preconditioning depends greatly on the nu-
merical properties of the partitioned matrix. For example, the simplest parallel preconditioning,
Additive Schwarz without overlap incurs no extra communications but may require a certain solu-
tion accuracy in the linear sub-system solution phase. On the other hand, in more complex parallel
preconditionings, such as incomplete LU (ILU) , the parallel overhead is also due to the commu-
nications of matrix data exchange and to possible load imbalances caused by fill-in. Thus, the
communication cost and load balancing are still important for parallel preconditioning. It should
be noted that, while the communication cost per iteration stays the same, the total communication
cost increases with the number of iterations. Therefore, an efficient preconditioner reduces parallel
overhead overall by decreasing the number of iterations to convergence.

To the best of out knowledge, only Duffet al. [16] use hypergraph partitioning to obtain ef-
fective parallel preconditioners. They first reorder the matrix to increase the weight of the diagonal
and scale the matrix. Then the following three steps are applied: (1) sparsify the input matrix by
dropping nonzeros of magnitude smaller than a tolerance value; (2) apply hypergraph partitioning
to the sparsified matrix; (3) construct a preconditioner corresponding to the diagonal blocks re-
sulting from the hypergraph partitioning. These steps are repeated for a range of tolerance values,
and at the end, the partition that maximizes the relative Frobenius norm of the preconditioner is
used to partition the matrix and hence to build the parallel preconditioner. In a parallel computing
environment, the total communication volume during the matrix-vector multiply operations with
the coefficient matrix may be large, since the hypergraph partitioning does not have any control on
the possible communication due to the dropped nonzeros. Another way to target effective parallel
preconditioning might be to add an additional constraint to a hypergraph partitioning algorithm.
However, as Pinar and Hendrickson point out in [29], partitioning for some complex objectives
cannot, in general, be done by a single partitioning. Most of the time, the complex objective cannot
be evaluated before partitioning takes place. They suggest partitioning first for a simple objective
and then try to optimize the other(s) in a distinct phase. In the case of partitioning for precondi-
tioiner quality, combining two constraints, structural and preconditioiner balances, may render the
partitions sub-optimal, such that neither constraint is properly satisfied. For example, a few extra
vertices in a part may spike the matrix-vector multiply operation count in that part. Similarly, an

2

exchange of just a few vertices among parts may improve the uniformity of the preconditioner.
The paper is organized as follows. In Section 2, an overview of commonly used parallel

preconditioning techniques is given along with relating matrix reordering to the preconditioner
performance. Section 3 describes the proposed hypergraph partitioning techniques to construct
parallel preconditioners, while the numerical experiments are given in Section 4.

2 Parallel preconditioning strategies
Consider a linear system

Ax = b,

whereA is a general sparsen×n matrix,b is the right-hand side vector, andx is the solution vec-
tor. An iterative process may be used to obtainx with a certain (given) accuracy. The reduction in
the residualr = b−Ax norm is used to monitor the convergence of the iterative method. Precon-
ditioning plays an important role in iterative convergence process. For difficult (ill-conditioned)
linear systems, preconditioning may be the only hope in obtaining the solution. Thus, much effort
is spent on finding a good preconditioiner given a linear system. In parallel environments, the
full spectrum of techniques used in sequential preconditioning may not be practical since many
of these techniques are based on incomplete matrix factorization of the entire matrix and are of-
ten constructed “on-the-fly” as the factorization progresses. The sheer amount of communication
during this process would dominate the parallel overhead. On the other hand, due to the increased
processing power, an inexpensive parallel preconditioning, such as Additive Schwarz as shown in
Algorithm 2.1 (see, e.g., [31]) , becomes attractive if it leads to a residual norm reduction, albeit
in a large number of iterations. This preconditioner requires a solve for the local system which
couples the local unknowns only. To improve convergence, Additive Schwarz with overlap [39]
may be exploited, such that each subdomaini includes a layer of variables also owned by some
neighboring . After solving the local systems, the overlapping variables which are repeated are
often averaged in some ways to reach consistency. Restrictive Additive Schwarz (RAS) [6] is a
better approach in which, after the local solve, any overlapped variable is simply ignored, so the
local subdomain keeps only its own part and discards the rest. This apparently unnatural procedure
results in excellent gains in the number of iterations needed to converge, see [6] for details.

ALGORITHM 2.1. Additive Schwarz in subdomain i

1. Update local residual ri = (b−Ax)i.
2. Solve Aiδi = ri.
3. Update local solution xi = xi + δi.

When the number of iterations to convergence becomes large with Additive Schwarz, more
sophisticated preconditioning techniques may be considered. In particular, distributed Schur Com-
plement (dSC) techniques [33] often lead to superior convergence properties while retaining good
parallelism. Briefly, the dSC techniques are more effective than their standard Additive Schwarz
counterparts because, in contrast with Additive Schwarz, they attempt to solve a smaller global
system which only couples local and remote unknowns from neighboring subdomains. This solve
is preceded by a communication phase, which is akin to the one used in the matrix-vector mul-
tiply to exchange values for the boundary unknowns. Thus, dSC techniques incur larger parallel
overhead compared with the related Additive Schwarz procedure from which it is derived. The
details of the dSC construction may be found in [33] and their implementation in the vertex-based
row-wise partitioning in [35].

3

Distributed Schur complement and Additive Schwarz preconditioners are both based on the
incomplete LU factorization of the matrixAi which is local to subdomaini, i = 1, . . . ,K. For
ill-conditioned linear systems, the incomplete factorizations may be inaccurate in the sense that
‖Ai − LiUi‖ is not small, or unstable, in the sense that‖(LiUi)−1‖ is huge. In [11], a strong
correlation between instability of the preconditioner and the size ofE = log (‖(LU)−1‖inf) is
shown, and this is suggested as a practical means of gauging the quality of a preconditioner. This
rough measure of instability can be inexpensively computed asE = log (‖(LU)−1e‖1), where
e is a vector of all ones andLU is a product of incomplete LU factors ofA. For distributed
preconditioners, aper subdomainvalueEi is considered asEi = log (‖(LiUi)−1ei‖1), whereLi

andUi are the incomplete factors local to subdomaini [40].

2.1 Nonsymmetric permutations: diagonal dominance PQ orderings

In recent years, a number of new reordering strategies have been designed to improve the robust-
ness of preconditioning techniques. A major distinction between these strategies and classical ones
is that they sacrifice symmetry in the reorderings, i.e., they reorder rows and columns differently.
For problems arising from partial differential equations, this is usually considered a poor idea.
However, in cases of extreme indefiniteness, these techniques can be of great help. Recent papers
[14, 15, 32] indicate that these methods can lead to significant improvements in the preconditioner
robustness. The code MC64 [14, 15] performs a one-sided permutation of the columns (or rows)
of A in a preprocessing stage. The leading criterion used here is that the column permutationq
should be such that

n∏
i=1

|ai,q(i)| is maximized.

This follows work by Olschowska and Neumaier [28] who initially developed this strategy as a
means of avoiding pivoting in Gaussian elimination. These authors translate the above optimiza-
tion problem into

min
q

n∑
i=1

ci,q(i) with cij =

{
log

[
‖a:,j‖∞
|aij |

]
if aij 6= 0

+∞ else.

Once this problem is solved resulting in a permutation, an ILU factorization is performed on the
permuted matrix usually yielding a more stable preconditioner.

In [32] a dynamic procedure was advocated instead of this static approach. The technique
referred to as diagonal dominance PQ orderings (ddPQ orderings) is based on a simple strategy
which uses the ARMS preconditioner framework [36] to extract 2-sided permutations (P for rows
andQ for columns). In the following we summarize the procedure. Details can be found in [32].
The main idea is to generalize the ARMS ordering by using 2-sided permutations. So, the matrix
A is permuted (on both sides) and the resulting matrix has following block structure:

PAQT =
(

B F
E C

)
. (1)

No particular structure is assumed for theB block. Instead, the pair of permutationsP,Q is
selected so that theB block has the “most diagonally dominant” rows and few nonzero elements
(to reduce fill-in). This principle can now be carried to a multilevel framework of ARMS. As
in ARMS, at thel-th level we reorder matrix as shown above and then we carry out the block
factorization “approximately”

4

PlAlQ
T
l =

(
Bl Fl

El Cl

)
≈

(
Ll 0

ElU
−1
l I

)
×

(
Ul L−1

l Fl

0 Al+1

)
, (2)

where

Bl ≈ LlUl

Al+1 ≈ Cl − (ElU
−1
l)(L−1

l Fl) .

Note that the motivation for this strategy is that it is critical to have an accurate and well-
conditionedB block, see [4, 5]. The case whenB is of dimension 1 corresponds to an inexpensive
form of a complete pivoting ILU. The procedure can therefore be viewed from the angle of a
incomplete LU factorization with complete pivoting.

Let pi andqi, 1 ≤ pi, qi ≤ n be matrix row and column numbers, respectively. Define a
matching setM = {(pi, qi) | pi 6= pj , andqi 6= qj , ∀j 6= j, i, j = 1, . . . , nM andnM ≤ n}. In
the case when the number of pairsnM = n, we have a (full) permutation pair(P,Q). A partial
matching set can be easily completed into a full pair(P,Q) by a greedy approach. Algorithm 2.2
presents the three stages to find the PQ ordering.

ALGORITHM 2.2. PQ ordering construction
1. Preselection:Filter out poor rows (in the sense of diagonal dominance).

The nodes are sorted—in descending order—
according to an inexpensive priority rule
for consideration in the next phase.

2. Matching:Scan the candidate entries in order given by preselection;
Accept them into set M, or reject them.

3. Completion:Complete the matching set into a complete pair (P,Q)
by a greedy algorithm.

Once the PQ ordering is constructed, the matrix in (1) is re-ordered, and theC block corre-
sponds to the rejected nodes. Next, the factorization (2) is performed and the process is repeated
recursively on the Schur complement. There are many possible variants for all three stages in
Algorithm 2.2.

We now mention a few of the choices used for the diagonal dominance criterion. These are
used in the preselection as well as in the matching phases. For example, in the preselection, one
can decide to sort entriesaij according to the scalars:

ρij =
|aij |
‖ai,:‖1

,

where‖ai,:‖1 is the 1-norm of the rowi, following the Matlab notation. Ifaij is permuted into a
diagonal entry, thenρij would represent a diagonal dominance strength of this entry. In particular,
if ρij > 1/2, then the row would become strictly diagonally dominant. Sorting all the entries
by diagonal dominance has the major weakness that it does not take into consideration potential
fill-in. For this reason, the criterion is often altered by multiplying the denominator by the number
of nonzero entries in the row:

ρij =
|aij |

‖ai,:‖1 × nnz(ai,:)
.

Finally, it is clear that column diagonal dominance can be used instead of row diagonal dominance.
One can also combine the two.

5

2
3

5
6

1

4

h2 h3 h4 h5 h6h1

(a)

1

3

6 5

2

4

h5

h1 h4

h6 h3 h2

(b)

Figure 1: Column-net hypergraph representation

3 Hypergraph partitioning models
To represent a sparsen × n matrix A, we use a column-net hypergraph model proposed in [8].
They define hypergraphG = (V,H), whereV = {v1, . . . , vn} is the set of vertices representing
the matrix rows andH = {h1, . . . , hn} is the set of hyperedges representing the columns, such
thathj contains the vertices{vi | aij ∈ A and i = 1, . . . , n}. Figure 1 shows a sample matrix
and the associated column-net hypergraph model, in which the vertices are shown with circles and
hyperedges as lines connecting to the vertices. In the column-net hypergraph model, weights can
be associated with the vertices and hyperedges.

Π = {V1, V2, . . . , VK} is aK-way partition of the vertex set if

V = ∪K
i=1Vi and Vi ∩ Vj = ∅ ∀i, j, such thati 6= j.

In Π, the connectivity setΛj of an hyperedgehj is the set of parts in whichhj has vertices. The
connectivityλj of a hyperedgehj is the cardinality ofΛj . A hyperedgehj is said to be cut if
λj > 1. For example, if in Figure 1(b)V1 = {1, 3, 4} andV2 = {2, 5, 6} then the hyperedgeh6

has connectivity two and hence it is a cut hyperedge, while hyperedgeh1 has connectivity one.
In hypergraph partitioning problem, the objective is to minimize the cutsizeCΠ which may

be defined in several ways using the weightcj of hyperedgehj :

C(Π) ≡ Cλ(Π) =
∑
j∈H

cj(λj − 1) or C(Π) ≡ Cc(Π) =
∑

j∈H,λj>1

cj . (3)

These two objective functions are widely used in the VLSI community [26] and also in the sci-
entific computing community (see for example [2, 8, 41, 44, 3]). The partitioning constraint is
to satisfy a balancing constraint on part weights. Typically the weight of a part is the sum of the
weights of vertices in that part in partitionΠ. A variant of this problem is the multi-constraint hy-
pergraph partitioning [10, 25] in which each vertex has a vector of weights associated with it. The
objective is the same as in (3), and the partitioning constraint is to satisfy a balancing constraint
associated with each weight.

A distinct advantage of the hypergraph models over the standard and bipartite graph models
is that the partitioning objective of minimizingCλ(Π) is an exact measure of the total communi-

6

cation volume, whereas the objective in the graph models is an approximation [8, 18, 19, 20]. The
hypergraph models are said to be more expressive than the traditional graph models as they can
produce non-symmetric partitions [8, 18, 19, 20] and can represent more involved computational
dependencies [42, 43], e.g., successive matrix-vector multiplies.

There are two common approaches to define the vertex weights. The first one sets the weight
of the vertexvi to be equal to the number of nonzeros in theith row of the matrix. This approach
aims to achieve load balance among processors for the matrix-vector multiply operations. The
second one sets a unit weight for each vertex. This approach aims to achieve the balance on the
number of unknowns per processor. For preconditioning, neither of these two approaches neces-
sarily lead to balanced workload, mainly because the amount of computations in preconditioning
depends much on the numerical values of the matrix nonzeros.

In the rest of this section, we investigate three hypergraph based matrix partitioning methods.
They target better parallel preconditioners and load balancing of preconditioner operations. As is
customary in scientific computing community, we are interested inK-way partitioning of the ma-
trices, whereK is the number of processors, such that theith part is assigned to theith processors.
In Section 3.1, we present schemes with weights on hyperedges in an attempt to favor a certain
type of hyperedges during partitioning. In Section 3.2, we investigate two different partitioning
techniques which try to balance the difficulty of local subsystems.

3.1 Assigning hyperedge weights

Weights on hyperedges and/or on vertices may play an important role in using hypergraph parti-
tioning to construct a good preconditioning. In particular, incorporating specific numerical prop-
erties, such as diagonal dominance, into hypergraph models may prove beneficial. Consider a
weighted versionGw = (V,H, Wv,Wh) of the hypergraphG defined earlier, in whichWv is the
set of vertex weights andWh is the set of hyperedge weights.

The weightwj of the hyperedgehj is based on the notion ofweak diagonal dominancein a
relative sense. Define

τj =
ajj

‖a:j‖1
and τ ′

j =
τj

maxi |τi|
.

Columnj (the hyperedgehj) is deemed sufficiently diagonally dominant (denoted asD) if τ ′
j ≥

∆, where0 < ∆ ≤ 1.0. For example, in Figure 1, theD hyperedges might beh1, h3, h4, andh6

(light-colored), whereas̃D might beh2 andh5 (dark-colored) based on some∆.
We have explored different weight schemes in which eitherD or D̃ hyperedges are heavily

weighted to tune the partitioning algorithms to favorD or D̃ hyperedges, respectively. In the for-
mer case, when theD hyperedges are to be kept in the same partition, a local submatrix will exhibit
better weak diagonal-dominance. This is beneficial for solving local systems when constructing
distributed preconditioning, such as Additive Schwarz. In the latter case, when the partitioner
attempts to keep thẽD hyperedges in the same partition, the interfaces may contain diagonal-
dominant columns, i.e., columns with small off-diagonal matrix entries. Thus, when these entries
are disregarded or not fully considered in preconditioning, the information and accuracy loss may
be tolerable.

Two weight schemes have been tried—one emphasizing the balance between the cardinality
of the hyperedge and its magnitude and the other considering directly the relative weak diagonal
dominanceτ ′ of the hyperedge. They are denotedW s

h and W τ
h , respectively, and defined as

follows.

7

Definition 3.1. A hyperedgehj is assigned a weightws
j ∈W s

h , where

ws
j =

{
1, 000

∑
vi∈hj

|vi|/|hj | if hj is D (D̃);
1 otherwise.

Definition 3.2. A hyperedgehj is assigned a weightwτ
j ∈W τ

h , where

wτ
j =

{
1, 000τ ′ if hj is D (D̃);
1 otherwise.

3.2 Separate partitioning techniques

It may be observed that, in general, irregular-structured matrices do not exhibit good diagonal-
dominance of rows or columns. Thus, bothD and D̃ hyperedges may be present in a matrix
hypergraph, although the precise ratio of theD andD̃ hyperedges depends on the user-supplied
value of∆ when relative weak diagonal dominanceτ ′ is considered. For the weight schemes
W s

h and W τ
h , it may happen that some processors contain significantly more hyperedges of a

certain type than others do so. Thus, some local system solvers will work harder than others,
lagging behind in time and/or accuracy and creating preconditioner workload imbalance. We
propose distributing theD andD̃ hyperedges among processors evenly in an attempt to avoid
the varying difficulty among local systems. We consider two approaches. One uses a multi-
constraint hypergraph partitioning tool as black-box, the other decomposes the problem into two
sub-problems and then combines the solutions. Both approaches assume a2 × 2 block structure
on the coefficient matrixA

ABL =
[

Add Adσ

Aσd Aσσ

]
. (4)

The block structure is obtained by symmetrically permuting the matrixA, such that theD
columns precede thẽD ones (due to symmetrical permutation the rows corresponding to theD
columns precede the rows corresponding to theD̃ columns). In other words, the submatrixAdd

contains all nonzerosaij where columnsi andj areD. Likewise,Aσσ contains all nonzerosaij

where columnsi andj areD̃. The submatricesAdσ andAσd contain nonzerosaij where either
the columni or j is D.

3.2.1 A multi-constraint formulation

In this approach, we use the column-net hypergraph model [8] with a two-constraint formulation.
For each vertexvi, the weight vector〈1, 0〉 is used if the corresponding rowi is in the first row
block of ABL (4), otherwise the weight vector〈0, 1〉 is used. Partitioning the hypergraph into
K parts will minimize the total communication volume in the matrix-vector multiplies with the
coefficient matrixA. Maintaining balance on the part weights in terms of the both weights of
the vertices will achieve balance on the number of unknowns per processor and also the num-
ber of rows corresponding toD andD̃ columns per processor. Furthermore, if the rows have
almost equal number of nonzeros, then this approach will likely achieve computational load bal-
ance among the processors for the matrix-vector multiply operations. Note that the weight scheme
proposed in Section 3.1 can also be used.

8

3.2.2 Independent partitioning followed by matching

The state-of-the-art methods for standard graph and hypergraph partitioning problem do not per-
form equally well under the multi-constraint formulation. For example, in recursive bisection
based approaches, the cutsize of a two-constraint partitioning is 20% to 30% worse than that of
the standard partitioning of the same graph [24, 45] and hypergraph [1, 43]. A directK-way hy-
pergraph partitioning method is proposed in [1] which performs considerably better than recursive
bisection based approaches in multi-constraint formulation. However, the cutsize in two-constraint
partitioning still lags behind that of the standard partitioning by about 10%.

In the proposed method, we partition the rows corresponding toD andD̃ columns inde-
pendently. For this purpose, we use the column net hypergraph modelsGdd and Gσσ of the
submatricesAdd andAσσ (see (4)), respectively. We partition these two hypergraphs intoK parts
asΠd = {d1, . . . , dK} andΠσ = {σ1, . . . , σK}, respectively, with the objective of minimizing
theCλ(Π). If the matrixABL has zeros in the main diagonal, we modify the hyperedges inGdd

andGσσ to contain the corresponding row vertices. This is a common practice [8, 42, 44] which
guarantees that the cutsizesCλ(Πd) andCλ(Πσ) correspond exactly to the volume of communi-
cation regardingAdd andAσσ. Each processor will be assigned a part from each partition, e.g., a
set of rows corresponding toD columns and a set of rows corresponding toD̃ columns. Note that
since the twoK-way partitions maintain balance on part weights, this approach will achieve (per
processor) balance on the number unknowns and also on the number ofD andD̃ columns, after
the parts are matched.

In matching a pair of row parts, one fromΠd and the other fromΠσ, the total volume of
communication in matrix-vector multiplications needs to be minimized. Specifically, the proposed
method tries to minimize the total volume of communication using a divide-and-conquer approach.
Firstly, it addresses the volume of communication within the submatricesAdd andAσσ, secondly,
combines the solutions to address the total volume of communication. A matching problem of the
same kind arises in a different context [1], where the problem is formulated as a maximum weight
bipartite matching problem. Here, we provide yet another formulation based on the minimum
weight perfect matching in bipartite graphs—also known as the assignment problem.

Algorithm 3.1 outlines the process, denoted IPM, of the independent partitioning followed
by matching. We define an edge-weighted complete bipartite graphGB = (Πd,Πσ, E, Ω) (line 5
of Algorithm 3.1), whereΠd = {d1, . . . , dK} andΠσ = {σ1, . . . , σK} represent the sets of parts
in the corresponding vertex partitionsΠd andΠσ; E = Πd × Πσ is the set of all possible edges.
Ω is the set of edge weights resulted from the AssignEdgeWeights procedure (line 4) as follows.

ALGORITHM 3.1. IPM: Independent Partitioning and Matching
1. Gdd ← column-net hypergraph ofAdd

Gσσ ← column-net hypergraph ofAσσ

2. Πd = {d1, . . . , dK} ← partition(Gdd,K)
Πσ = {σ1, . . . , σK} ← partition(Gσσ,K)

3. Compute Λd(j) and Λσ(j) for all columns j
4. Ω← AssignEdgeWeights(Πd,Λd,Πσ,Λσ, d, σ, A)
5. Define GB = (Πd,Πσ, E, Ω).
6. M ← a minimum weight perfect matching in GB

7. for each 〈dk, σ`〉 ∈M(GB) assign the corresponding
rows to processor Pk.

9

(b)(a)

d1

d2

d3

d4

σ1

σ2

σ3

σ4

d1

d2

d3

d4

σ1

σ2

σ3

σ4

j

Figure 2: (a) Four-way row-wise partitions (solid lines)Πd = {d1, d2, d3, d4} andΠσ = {σ1, σ2, σ3, σ4} onAdd and
Aσσ. The row-wise partitions are shown with horizontal solid lines. These partitions are extended into the blocksAdσ

andAσd and shown with horizontal dotted lines. Column partitions conforming to the row-wise partitions are shown
with vertical dotted lines. The columnj of typeD has connectivitiesΛd(j) = {d2, d3} andΛσ(j) = {σ1, σ3, σ4}.
(b) The bipartite graphGB = (Πd, Πσ, E, Ω). For the columnj, the displayed edges lines bear a unit weight.

Initially, all the edge weights,ω(k, `) ∈ Ω; for all k ∈ Πd and ` ∈ Πσ are zero. Then
AssignEdgeWeights processes the columns of typeD followed by the columns of typẽD using
UpdateEdgeWeights Algorithm 3.2 in each case. Consider, for example, theD columns. For
each columnj ∈ D having nonzeros inAσd, let πd(j) denote the part in partitionΠd to which
the corresponding rowi belongs. LetΛd(j) and Λσ(j) denote, respectively, the sets of parts
connected by hyperedgehj (columnj) according to the partitionsΠd andΠσ. Note thatπd(j) ∈
Λd(j) due to the conditionvj ∈ hj (i.e., zero-free diagonal assumption). Note also that the
columnj does not appear as a hyperedge in the hypergraphGσσ, and hence the connectivity set
Λσ(j) of hyperedgehj according to the partitionΠσ, is computed with respect to the row-wise
partition onAσd induced by the partitionΠσ. For each part pair(dk, σ`), wheredk ∈ Πd \ Λd(j)
and σ` ∈ Λσ(j), we add one to the weight of the edge(dk, σ`) ∈ E. The rationale is that
a partnot connected by hyperedgehj in Πd necessitates an additional unit of communication if
matched to a part connected by hyperedgehj under the partitionΠσ, i.e., a part having nonzeros in
columnj in the submatrixAdσ. Figure 2 illustrates these points on a partially shown hypothetical
matrix. Consider the columnj in Figure 2(a). Assume that its corresponding rowj is in d3, e.g.,
πd(j) = d3, and thatj has connectivity setsΛd(j) = {d2, d3} andΛσ(j) = {σ1, σ3, σ4}. Since
Πd \Λd(j) = {d1, d4}, it contributes one to the weights of the displayed edges (Figure 2(b)), e.g.,
to the edges belonging to the set{d1, d4} × {σ1, σ3, σ4} ∈ E.

ALGORITHM 3.2. UpdateEdgeWeights(Ω,Πd,Λd,Πσ,Λσ, T, O, A)
1. for each column j of type T, j ∩AOT 6= 0
2. if T = d then Sd ← Πd \ Λd(j) ; Sσ ← Λσ(j)
3. else Sd ← Λd(j) ; Sσ ← Πσ \ Λσ(j)
4. for each (dk, σ`) ∈ Sd × Sσ

5. ω(dk, σ`)← ω(dk, σ`) + 1

Recall thatCλ(Πd) andCλ(Πσ) denote, respectively, the cutsize of the partitions of the
hypergraphsGdd andGσσ. Let CB(M) denote the cost of a minimum weight perfect matching

10

M in the bipartite graphGB described above. Then we have the following theorem establishing
the relation among the total communication volume and these three quantities.

Theorem 3.1. Total volume of communication in matrix-vector multiplies withA is equal to
Cλ(Πd) + Cλ(Πσ) + CB(M).

Proof: Consider a column whose nonzeros are confined withinAdd or Aσσ. Then the com-
munication volume regarding the associated vector entry is encapsulated in the cutsize of the cor-
responding hypergraph partitioning, and no edge inGB is assigned a weight due to that column.
For the columns having nonzeros inAdσ or Aσd (each column has at least one nonzero in either
Add or Aσσ due to zero-free diagonal assumption), we discuss only theD columns—D̃ columns
can be treated similarly.

Consider a columnj of type D having nonzeros inAdd andAσd. We need to show that
messages that are sent by the processorPπd(j) regarding the vector entryxj are accounted for.
Consider a pair of parts〈dk, σ`〉 matched by the bipartite matching algorithm wheredk 6= πd(j).
The processorPπd(j) sends a message to the processorPk corresponding to〈dk, σ`〉 iff dk ∈ Λd(j)
or σ` ∈ Λσ(j). If dk ∈ Λd(j), then by the definition of the edge weights, the edge(dk, σ`) ∈ E
does not bear a weight corresponding toj, regardless ofσ` being inΛσ(j) or not because the
cost of sendingxj from Pπd(j) to Pk is included inCλ(Πdd). If dk /∈ Λd(j), but σ` ∈ Λσ(j),
then the communication volume of sendingxj from Pπd(j) to Pk is not included inCλ(Πdd). By
the definition of the edge weights, the edge(dk, σ`) ∈ E bears a unit weight for the columnj.
Therefore, the cost of sendingxj from Pπd(j) to the processorPk is included in the weight of the
matching in the bipartite graph. Q.E.D.

To see how the theorem works, consider again Figure 2 and assume thatM = {〈di, σi〉 :
i = 1, . . . , 4} is a minimum weight perfect matching in the bipartite graphGB. Namely, for
i = 1, . . . , 4, the processorPi holds the row blocksdi andσi. Consider the columnj such that
πd(j) = d3, Λd(j) = {d2, d3}, andΛσ(j) = {σ1, σ3, σ4}. The contribution of the columnj to
the cost of the matchingM is two units: one for the edge(d1, σ1) and 1 for the edge(d4, σ4).
ProcessorP3 has to sendxj to processorsP1 (due toσ1), P2 (due tod2), andP4 (due toσ4). The
volume of send operation fromP3 to P2 is captured byCλ(Πd) sinced2 ∈ Λd(j). The volumes of
send operations fromP3 to P1 andP4 are captured by the weights of the matching edges(d1, σ1)
and(d4, σ4), respectively.

4 Numerical experiments
The test matrices are shown in Table 1. They originate from semiconductor device simulation and
are provided in the University of Florida sparse matrix collection by O. Schenk. The four matrices
are rather representative of the whole matrix suite coming from the DESSIS simulator [17]. Their
sizes, numbers of nonzeros, and problem dimensionality are shown in columnsn, nnz, anddim ,
respectively. The columnDr;c shows the percentages of theD rows and columns, respectively, as
reported by theinfo routine from SPARSKIT [30]. The estimated condition numbers (column
condest) have been reported first in [38], in which they have been computed using the MC71
algorithm [22] with the direct solver PARDISO [37]. Since these matrices are very ill-conditioned,
they appear not manageable by off-the-shelf preconditioned iterative methods and direct solvers, as
shown in [38] for a few sequential implementations, and may require preprocessing. In particular,
the authors of [38] have employed a pre-orderingPr of the unknowns ofA to maximize the
product of the diagonal values ofPrA followed by proper scaling. Consecutively, the condition
number has been reduced and the diagonal dominance of rows and columns has increased. Note

11

Table 1: Matrix characteristics

Matrix n nnz dim condest Dr;c , %
igbt3 10,938 234,006 3D 4.74e19 4 ; 26

2768bjtcai 27,628 442,898 2D 6.46e19 49 ; 43
matrix 9 103,430 2,121,550 3D 3.08e23 35 ; 11

matrix new 3 125,329 2,678,750 3D 3.48e22 63 ; 58

Figure 3: Symmetric partitioner and MC64 with scaling may lead to convergence

that this reordering is also implemented as MC64 algorithm in the HSL collection [22], with
which we have also experimented. For parallel iterative methods, MC64 with scaling (MPDS)
has lead to convergence when the symmetric partitioning MeTiS [23] has been used. Figure 3
shows the number of outer iterations for the MeTiSMPDS combination as compared with the
performance for the non-weighted hypergraphGH . Note that no convergence has been observed
with MeTiS otherwise. The results of applying MPDS to hypergraph partitioning were not as
dramatic, however, and did not show radical improvement in the convergence process. To better
study the effects of our partitioning schemes, we opted not to preprocess with MPDS, which may
also be prohibitively expensive for large-scale matrices and less expensive procedures, such as
ddPQ [32], could be used. The linear system tested have been scaled by 2-norms of rows followed
by 2-norms of columns.

The experiments were performed on NERSC computer resources1 using PaToH [9] hyper-
graph partitioner, which implements partitioning sequentially and thus has some limitations on
the matrix size. To perform truly large-scale tests, a new Zoltan [12] hypergraph partitioning is
already available [13] and will be used in our future work. We have used the default choices for
most settings in PaToH partitioning except that the partitioning of superior qualityQUALITY was
asked and both cost objective functionsCλ(Π) andCc(Π) (Equation (3)) were considered. For
our two-constraint formulation (denoted as MC), the PaToHMultiConst Partition func-
tion has been employed with default settings but except for the for coarsening algorithm, which
ew set to the agglomerated version of the heavy connectivity matching (HCC) [9]. Note that in
PaToH many parameter choices are based on randomized algorithms, e.g., the default for initial

1The NERSC IBM SP RS/6000, named Seaborg, is a distributed memory computer with 380 compute nodes with
16 processors per node. Each processor has a peak performance of 1.5 GFlops. The nodes having 16GBytes of shared
memory were used.

12

partitioning parameter is a greedy algorithm starting with a randomly selected vertex. Thus, we
have run all the experiments several times. Since no changes have been observed in the outer itera-
tion numbers and the difference in the cutsize amounted to no more than 4%, the results presented
in this Section are not averaged over all the runs.

To solve the distributed linear systems, the pARMS library [27] was employed. In partic-
ular, we have utilized its implementations of Additive Schwarz and distributed Schur comple-
ment preconditionings. Flexible GMRES [31] (FGMRES) was taken as iterative accelerator with
the Krylov subspace of size twenty and two different convergence tolerancest1 = 10−7 and
t2 = 10−4. The following list displays the preconditioner settings along with their shorthand
names:

• add ilut is non-overlapping Additive Schwarz procedure, with local incomplete LU with
dual-threshold (ILUT) [31] on subdomains with fill-in parameter 60, dropping tolerance
10−3, with and without five inner iterations,

• lsch ilut is distributed Schur complement technique (dSC) [33] with ILUT as factoriza-
tion used for local submatrices using the same settings as inadd ilut . This preconditioner
is equivalent to the Additive Schwarz preconditioner on the Schur complement system.

4.1 Overall comparison of partitioning strategies

For two variations of the weight schemes (columnsW ŝ
h andW s̄

h), the IPM algorithm (column
IPM), the two-constraint partitioning (columnMC), and the non-weighted standard hypergraph
partitioning (columnnW), Table 2 compares the outer iteration numbers to converge (columnsIO)
and the preconditioner stability (columnsE) whenadd ilut is used without overlap and having
no inner iterations. The maximum number of iterations allowed was 700 with the convergence
tolerance oft1 = 10−7. The partitioning threshold∆ was set to 0.8, and the results shown are
the best among the two objective functionsCλ(Π) andCc(Π) for each case. The smallest number
of iterations is highlighted in bold face for each matrix/processor combination. Observe thatnW
has failed to converge formatrix new 3 on 12 processors andMChas performed poorly in
most cases. TheMCresults were not obtained on 12 processors becausePaToH MultiConst
partitions only into the power of two number of parts. There is also no capability to use weights
with PaToH MultiConst .

For large processor numbers, it becomes difficult for the simple Additive Schwarz precondi-
tioning to produce convergence (see [39], e.g.) even with a sophisticated partitioning algorithm.
A remedy might be to use a variant of distributed Schur Complement (dSC). Table 3 presents the
results for the 32-processor experiment set-up similar to the one shown in Table 2 except that it
uses the dSC,lsch ilut , with five inner iterations as preconditioiner. For even larger processor
numbers, larger matrices need to be considered, which we did not pursue in this initial study of
the proposed algorithms. It may be observed in Table 3 that the proposed algorithms show an
improvement in the outer iterations over the performance ofnW. An exception is the convergence
with IPM for the igbt3 problem.

4.2 Tuning weight assignment parameters

The implications for preconditioning caused by either the proposed hypergraph partitioning weight
schemes or by the IPM algorithm depend on the hyperedge separation intoD andD̃ types, i.e.,
on the comparison of the relative diagonal dominanceτ ′ with the threshold∆ for each hyperedge.

13

Table 2: Comparison of outer iterations for various partitioning strategies with∆ = 0.8.

Matrix nW W ŝ
h W s̄

h IPM MC
IO E IO E IO E IO E IO E

Four processors
igbt3 151 4.7 157 4.7 153 4.7 176 4.7 700 4.69

2768bjtcai 339 4.24 413 4.28 328 4.24 211 4.22 330 4.22
matrix 9 167 3.21 154 3.28 177 3.16 150 3.33 216 2.93

matrix new 3 328 3.86 603 3.45 211 3.38 213 3.71 700 3.86

Eight processors
igbt3 408 4.5 322 4.51 400 4.52 612 4.51 700 5.71

2768bjtcai 466 4.24 655 4.12 359 4.23 356 4.23 700 4.22
matrix 9 227 3.13 180 3.25 237 3.16 152 3.21 300 2.86

matrix new 3 379 3.41 675 3.33 344 3.84 373 3.87 700 3.92

Twelve processors
igbt3 196 4.43 200 4.43 241 4.48 199 4.49

2768bjtcai 507 3.78 579 3.77 502 4.17 450 3.97
matrix 9 216 3.21 191 3.23 207 3.16 218 2.99

matrix new 3 700 2.82 636 3.3 489 3.82 479 3.68

Table 3: 32-processor experiment with distributed Schur Complement preconditioiner

Matrix nW W ŝ
h W s̄

h IPM MC
IO E IO E IO E IO E IO E

igbt3 122 4.06 73 4.10 95 4.3 107 4.27 84 3.92
2768bjtcai 140 3.74 117 3.75 133 3.75 117 4.08 180 3.49
matrix 9 40 3.29 37 3.26 42 3.39 34 3.44 74 3.53

matrix new 3 113 3.47 110 3.59 96 3.61 84 3.85 144 3.50

14

Table 4: Varying the threshold∆ for assigning hyperedge weights. Iteration numbers to converge (left) and ratio of the
D hyperedges to the total size of the corresponding hypergraph (right)

Matrix Threshold∆ W C
.2 .5 .8 .9

Four processors
igbt3 29 63 30 29 ŝ λ

2768bjtcai 58 35 60 60 ŝ λ
matrix 9 46 66 47 52 ŝ λ

matrix new 3 97 75 58 58 s̄ λ

Eight processors
igbt3 37 77 37 34 ŝ λ

2768bjtcai 77 80 59 59 τ̄ λ
matrix 9 77 71 59 71 τ̂ λ

matrix new 3 80 92 73 49 τ̄ c

Twelve processors
igbt3 71 56 55 53 s̄ λ

2768bjtcai 79 80 64 64 τ̄ λ
matrix 9 89 75 75 75 τ̂ λ

matrix new 3 110 96 82 67 s̄ c

Matrix Ratio ofD hyperedges
.2 .5 .8 .9

igbt3 .86 .29 .0011 .0005
2768bjtcai .87 .35 .23 .23
matrix 9 .96 .17 .067 .05

matrix new 3 .99 .54 .37 .37

Table 4(left) shows the iteration numbers for theadd ilut preconditioner with five inner itera-
tions and FGMRES(20) witht2 for ∆ = {0.2, 0.5, 0.8, 0.9} (columns 2–5). The weight scheme
is given in columnW , whereŝ ands̄ refer to theW s

h weight scheme withD andD̃ type hyper-
edges, respectively, whilêτ andτ̄ refer to theW τ

h weight scheme withD andD̃ type hyperedges,
respectively. ColumnC shows the partitioning objective considered in each case, such thatλ and
c stand forCλ(Π)andCc(Π), respectively.

Although the threshold∆ may be given as user-defined parameter and obviously depends on
the matrix at hand, the partitioner may be outfitted with a certain pre-set value of∆, which will
be satisfactory for a large number of matrices. We have investigated several values and observed
that∆ is sensitive only up to rather broad ranges. In particular, Table 4(right) implies, by proving
the ratios of the number ofD hyperedges to the total size of the hypergraph, that the constructed
hypergraphs may be similar for∆ = 0.8 and∆ = 0.9 under the same weight schemes. Indeed the
iteration numbers are similar in most cases for these thresholds (Table 4, left). The larger values
of ∆ — those closer to one — provide for a better convergence in most cases. These observations
are similar in spirit to the findings in [32] concerning the non-symmetric reorderings to improve
the preconditioning.

4.3 Hyperedge cutsizes

Both objective functions in (3) may include a weight term as multiplier costcj . Thus, PaToH
returns theweightedpartitioning cost by default. To find out the number of hyperedges cut, Pa-
ToH provides a separate functionCompute Cut that may be called on the already partitioned
hypergraph with hyperedge weights unset. For 8- and 32-way partitionings, Figures 4 depicts —
as groups of 10 bars — the unweighted hyperedge cutsizes normalized by the test problem size
corresponding to each group. The darker-colored bars represent the cutsizes for theCλ(Π) objec-
tive function, whereas the lighter-colored bars are forCc(Π). It may be observed that, as expected,

15

Table 5: Different matchings for the bipartite graphGB constructed in the IPM algorithm, when∆ = 0.5 and
Cλ(Π) are used to partition separately hypergraphsGdd andGσσ into eight parts. Standard deviations are shown
in columnsloc

Matrix min match simple match
IO loc CB(M) IO loc CB(M)

igbt3 266 .0017 5,054 306 .0019 9,417
2768bjtcai 57 .0026 14,984 96 .0021 22,805
matrix 9 76 .0008 57,779 94 .0007 69,226

matrix new 3 145 .0008 84,501 167 .0005 143,542

there are fewer cut hyperedges when theCc(Π) cost is used, and the difference is less pronounced
for smaller problems. According to [8], however, theCλ(Π) (connectivity) objective function
corresponds exactly to the total communication volume. In our experiments,Cλ(Π) has lead
to a better preconditioner performance more often as seen in Table 4 and, for the data in Table 3,
Cλ(Π) was chosen as best performing in 13 out of 16 entries. Within each bar group, a comparison
of the hyperedge cuts shows that cutsize may be almost equal for the weight schemes (bars 2-9)
and for standard (non-weighted) hypergraph representation (bars 0 and 1) when smaller problems
are considered. The difference grows, however, with lowering the partitioning threshold∆ from
0.8 to 0.5 (Figures 4(a) and (b), respectively). The same performance is observed for the 32-way
partitionings shown in Figures 4(c) and (d), respectively. For larger problem sizes, the weight
schemes produce more hyperedge cuts in almost all the cases. In the bar groupsmatrix9 and
matrixNew3 , the spiked cutsizes (bars 4 and 8) correspond to theW ŝ

h andW τ̂
h weight schemes,

i.e., to the weight schemes withD hyperedges being heavy. For the large partitioning threshold
values, there are very fewD hyperedges, and thus the partitioner is free to cut a great deal of
hyperedges under theCλ(Π) objective function, which is not the case forCc(Π) (bars 5 and 9).
Consequently, to balance the “preconditioner” and “structural quality” viewpoints, it is better to
use theCc(Π) objective function when theW ŝ

h andW τ̂
h weight schemes are applied. Lowering

the partitioning threshold∆ yields moreD hyperedges and levels the cut discrepancies but not
enough, especially forW τ̂

h in thematrixNew3 group as seen in Figures 4(a) and (c), bars 8.

4.4 Detailed considerations for the IPM algorithm

The IPM algorithm 3.1 finds minimum weight perfect matching on the bipartite graphGB to
reduce the communication volume amongK parts. The ACM TOMS algorithm 548 [7] is consid-
ered in our experiments to obtain this matching.

Table 5 provides the results from using this algorithm onGB of size2K = 16 with different
definitions of the matching costCB(M) (columnmin match). Columnsimple match gives
the results for a simple matching of parts with the same indices, i.e., the partsdi andσi, i =
1, . . . ,K are matched. It may be observed that thesimple match is inferior to min match
in terms of the number of iterations (columnsIO) and the costCB(M). Thus, the objective of
reducing communication volume also benefits convergence by keeping together more strongly
connectedD and D̃ parts. Columnsloc show the standard deviations (STD) of the sizes of
the local subdomains normalized by the average subdomain size for a given matrix. The average
subdomain size appeared to be the same across all the cost metrics.

In Table 6, columns rDr (rDc) show the averages overK ratios ofD rows (columns) to

16

(a) (b)

(c) (d)

Figure 4: Hyperedge cutsizes for various weight schemes and two objective functionsCλ(Π) andCc(Π). Darker-
colored bars are forCλ(Π) and lighter-colored bars are forCc(Π). In each plot, four groups of bars represent the data
for igbt3 , 2768 bjtcai , matrix 9, andmatrix new 3, respectively. In a group, the bars are ordered, from 0
to 9, such that each corresponds to a particular weight scheme as follows: Non-weighted (bars 0-1),W s̄

h (bars 2-3),W ŝ
h

(bars 4-5),W τ̄
h (bars 6-7), andW τ̂

h (bars 8-9). Figures (a) and (b) show the 8-way partitioner results; (c) and (d) show
the 32-way ones, when different thresholds∆ are used

17

Table 6: Comparison of the balances of theD rows and columns when∆ = 0.5 andCc(Π) are used. Mean values
followed by standard deviations are shown in ColumnsIPM, nW, andW s̄

h

Matrix IPM nW W s̄
h

rDr rDc rDr rDc, rDr rDc,
Four processors

igbt3 .32; .0873 .36; .0451 .31; .1109 .28; .0954 .32; .1109 .28; .0968
2768bjtcai .33; .0377 .41; .0408 .33; .1431 .37; .1173 .33; .1812 .36; .1576
matrix 9 .29; .0206 .30; .0606 .29; .0141 .21; .1078 .29; .0299 .21; .1075

matrix new 3 .56; .0173 .60; .0171 .55; .0206 .56; .0183 .55; .0126 .55; .0222

Eight processors
igbt3 .05; .0198 .06; .0167 .32; .1296 .30; .1206 .32; .1184 .29; .0949

2768bjtcai .24; .0106 .52; .0119 .32; .2371 .38; .1971 .33; .2465 .37; .2079
matrix 9 .06; .0432 .16; .0238 .29; .0420 .25; .0968 .29; .0372 .24; .0922

matrix new 3 .37; .0083 .41; .0083 .56; .0249 .58; .0158 .56; .0920 .57; .0838

Twelve processors
igbt3 .32; .0807 .43; .0614 .32; .1204 .30; .1077 .32; .1240 .30; .1103

2768bjtcai .55; .0614 .64; .0308 .33; .2638 .38; .2289 .32; .2449 .37; .2125
matrix 9 .31; .0811 .43; .0509 .29; .0429 .25; .0929 .29; .0394 .25; .0918

matrix new 3 .29; .0648 .64; .0235 .55; .0360 .58; .0308 .56; .1762 .58; .1612

the total local subdomain size followed by the their STD for the IPM algorithm and non-weighted
hypergraph partitioning (columnsIPM andnW, respectively).

Observe that IPM produces generally more balanced numbers of bothD rows and columns,
which is in agreement with its goal of balancingD andD̃ columns/rows per processor. In addition,
Table 6 shows rDr and rDc for the weight schemeW s̄

h , which appears to be representative of the
other weight schemes tested and seems to be no better balanced thannW.

Section 4.2 presented some evidence (Table 4) that larger values of∆ in weight schemes
may be more beneficial for iterative convergence. The same argument holds for the IPM algorithm
since it also distinguishesD andD̃ hyperedges as the fist step. Table 7 shows the outer iteration
(columnsI0) numbers with the same iterative solver parameters as in Section 4.2 and with the
IPM algorithm used for partitioning. It is also interesting to note how the relative cutsizes of the
partitionsΠdd andΠσσ change as∆ increases. As seen in columnsIO, this is actually beneficial
for the iterative convergence even though the “diagonal dominant” hypergraphGdd becomes small
as∆ increases.

For the IPM algorithm, Figure 5 shows total communication volumesCIPM = Cλ(Πd) +
Cλ(Πσ) + CB(M), as given by Theorem 3.1, andCMC normalized by the problem sizes.CMC

is generally better except on theigbt3 problem, for which it has produced very unbalanced
partitions. (For the sake of plot scale,CMC are not presented forigbt3 .) However, for 32-way
partitioning IPM results in smaller cutsizes on some threshold∆ values. Note that, for larger
processor numbers (Figure 5(b)), larger values of∆ yield lesser communication volume.

18

Table 7: Outer iteration numbers and ratios of cutsizes,Cλ(Πdd)/Cλ(Πσσ) on 8 processors when the IPM partitioning
algorithm is used with the threshold∆ ∈ {.2, .6, .8, .9}

Matrix .2 .6 .8 .9
IO rC IO rC IO rC IO rC

igbt3 700 6.96 38 .26 35 .02 36 .002
2768bjtcai 700 7.43 56 .48 63 .51 63 .51
matrix 9 495 94.89 68 .06 66 .07 69 .08

matrix new 3 700 255.65 66 .74 83 .71 68 .72

(a) (b)

Figure 5: Separate partitioning techniques: Comparison of cutsize measures for∆ ∈ {.2, .6, .8} andCλ(Π)

19

5 Conclusions
We have shown that partitioning can affect convergence properties of distributed iterative solution
algorithms. In particular, for difficult linear systems, preconditioning may be more stable when
subdomains assigned to a processor are more diagonally-dominant and nodes on the interfaces are
rather small. We have shown several strategies for incorporating numerical values of the coefficient
matrix into hypergraph models by means of weights on hyperedges using the concept of weak
diagonal-dominance (D). Several weight schemes constructed show good performance on difficult
circuit device simulation matrices.

The goal of achieving a good convergence may be viewed as a complex objective function
for a partitioning algorithm and may be attained in stages: first partition to balance weak diagonal
dominance among subparts then merge the subparts. We have presented one such an algorithm
(called IPM) and showed that it balances the parts well according to theD property. In addition,
we have proved that it correctly minimizes the total communication volume when a minimum
weight matching problem is defined in a specific way on the bipartite graph ofD andD̃ parts.
The proposed algorithms have been studied with respect to the threshold parameter used to classify
the hyperedges asD andD̃ and we found that larger values of this parameter are typically more
beneficial for convergence.

Our future work includes conducting large-scale experiments and using the proposed algo-
rithms with parallel hypergraph partitioning codes, such as Zoltan.

References
[1] C. Aykanat, B. B. Cambazoglu, and B. Uçar. Multilevel directk-way hypergraph partitioning with multiple constraints and fixed

vertices.J. Parallel and Distr. Com., submitted, 2006.

[2] C. Aykanat, A. Pinar, and̈U. V. Çatalÿurek. Permuting sparse rectangular matrices into block-diagonal form.SIAM J. Sci.
Comput., 25(6):1860–1879, 2004.

[3] R. H. Bisseling and W. Meesen. Communication balancing in parallel sparse matrix-vector multiplication.Electronic Transac-
tions on Numerical Analysis, 21:47–65, 2005.

[4] M. Bollhöfer. A robust ILU with pivoting based on monitoring the growth of the inverse factors.Linear Algebra and its
Applications, 338(1-3):201–213, 2001.

[5] M. Bollhöfer and Y. Saad. Multilevel preconditioners constructed from inverse–based ILUs.SIAM Journal on Scientific Com-
puting, 27:1627–1650, 2006.

[6] X. C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse linear systems.SIAM Journal on
Scientific Computing, 21:792–797, 1999.

[7] Giorgio Carpaneto and Paolo Toth. Algorithm 548: Solution of the assignment problem [H].ACM Transactions on Mathematical
Software, 6(1):104–111, March 1980.

[8] Ü. V. Çatalÿurek and C. Aykanat. Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication.
IEEE Trans. Parallel Distrib. Syst., 10(7):673–693, 1999.

[9] Ü. V. Çatalÿurek and C. Aykanat. PaToH: A multilevel hypergraph partitioning tool, version 3.0. Technical report, Bilkent
University, Department of Computer Engineering, Ankara, 06533 Turkey, 1999.

[10] Ü. V. Çatalÿurek and C. Aykanat. A hypergraph-partitioning approach for coarse-grain decomposition. InProceedings of
Scientific Computing 2001 (SC2001), pages 10–16, Denver, Colorado, November 2001.

[11] E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite matrices.Journal of Computational and Applied
Mathematics, 86:387–414, 1997.

[12] K.D. Devine, E.G. Boman, R.T. Heapby, B. Hendrickson, and C. Vaughan. Zoltan data management service for parallel dynamic
applications.Computing in Science and Engg., 4(2):90–97, 2002.

20

[13] K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, and U.V. Catalyurek. Parallel hypergraph partitioning for scientific
computing. InProc. of 20th International Parallel and Distributed Processing Symposium (IPDPS’06). IEEE, 2006.

[14] I. S. Duff and J. Koster. The design and use of algorithms for permuting large entries to the diagonal of sparse matrices.SIAM
Journal on Matrix Analysis and Applications, 20:889–901, 1999.

[15] I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse matrix.SIAM Journal on Matrix
Analysis and Applications, 22(4):973–996, 2001.

[16] I. S. Duff, S. Riyavong, and M. B. van Gijzen. Parallel preconditioners based on partitioning sparse matrices. Technical Report
TR/PA/04/114, CERFACS, Toulouse, France, 2004.

[17] Integrated Systems Engineering. DESSISISE: Reference manual. http://www.ise.com, 2003.

[18] B. Hendrickson. Graph partitioning and parallel solvers: has the emperor no clothes?Lect. Notes Comput. Sci., 1457:218–225,
1998.

[19] B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel computing.Parallel Computing, 26(12):1519–1534,
2000.

[20] B. Hendrickson and T. G. Kolda. Partitioning rectangular and structurally unsymmetric sparse matrices for parallel processing.
SIAM J. Sci. Comput., 21(6):2048–2072, 2000.

[21] B. Hendrickson and R. Leland. The Chaco user’s guide — version, 1994.

[22] HSL:a collection of iso fortran codes for large scale scientific computation. http://www.cse.clrc.ac.uk/nag/hsl/hsl.shtml.

[23] G. Karypis and V. Kumar. MeTiS, unstructured graph partitioning and sparse matrix ordering system. version 2.0. Technical
report, University of Minnesota, Department of Computer Science, Minneapolis, MN 55455, August 1995.

[24] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning. Technical Report 98-019, University of
Minnesota, Department of Computer Science/Army HPC Research Center, May 1998.

[25] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint hypergraph partitioning. Technical Report 99-034, Univer-
sity of Minnesota, Department of Computer Science/Army HPC Research Center, Minneapolis, MN 55455, November 1998.

[26] T. Lengauer.Combinatorial Algorithms for Integrated Circuit Layout. Wiley–Teubner, Chichester, U.K., 1990.

[27] Z. Li, Y. Saad, and M. Sosonkina. pARMS: A parallel version of the algebraic recursive multilevel solver.Numerical Linear
Algebra with Applications, 10:485–509, 2003.

[28] M. Olschowska and A. Neumaier. A new pivoting strategy for Gaussian elimination.Linear Algebra and its Applications,
240:131–151, 1996.

[29] A. Pinar and B. Hendrickson. Partitioning for complex objectives. InProceedings of the 15th International Parallel and
Distributed Processing Symposium. IEEE Computer Society, 2001.

[30] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical report, Technical Report RIACS-90-20,
Research Institute for Advanced Computer Science, NASA Ames Research Center, Moffett Field, CA, 1990.

[31] Y. Saad.Iterative Methods for Sparse Linear Systems, 2nd edition. SIAM, Philadelpha, PA, 2003.

[32] Y. Saad. Multilevel ILU with reorderings for diagonal dominance.SIAM Journal on Scientific Computing, 27(3):1032–1057,
2005.

[33] Y. Saad and M. Sosonkina. Distributed Schur Complement techniques for general sparse linear systems.SIAM J. Scientific
Computing, 21(4):1337–1356, 1999.

[34] Y. Saad and M. Sosonkina. Non-standard parallel solution strategies for distributed sparse linear systems. In A. Uhl P. Zinterhof,
M. Vajtersic, editor,Parallel Computation: Proc. of ACPC’99, Lecture Notes in Computer Science, Berlin, 1999. Springer-
Verlag.

[35] Y. Saad, M. Sosonkina, and J. Zhang. Domain decomposition and multi-level type techniques for general sparse linear systems.
In Domain Decomposition Methods 10, Providence, RI, 1998. American Mathematical Society.

[36] Y. Saad and B. Suchomel. ARMS: An algebraic recursive multilevel solver for general sparse linear systems.Numerical Linear
Algebra with Applications, 9, 2002.

21

[37] O. Schenk, K. G̈artner, W. Fichtner, and A. Stricker. PARDISO: a high-performance serial and parallel sparse linear solver in
semiconductor device simulation.Future Generation Computer Systems, 18(1):69–78, 2001.

[38] O. Schenk, S. R̈ollin, and A. Gupta. The effects of unsymmetric matrix permutations and scalings in semiconductor device and
circuit simulation.IEEE Trans. on CAD of Integrated Circuits and Systems, 23(3):400–411, 2004.

[39] B. Smith, P. Bjørstad, and W. Gropp.Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential
Equations. Cambridge University Press, New York, 1996.

[40] M. Sosonkina, Y. Saad, and X. Cai. Using the parallel algebraic recursive multilevel solver in modern physical applications.
Future Generation Computer Systems, 20:489–500, 2004.

[41] B. Uçar and C. Aykanat. Encapsulating multiple communication-cost metrics in partitioning sparse rectangular matrices for
parallel matrix-vector multiplies.SIAM J. Sci. Comput., 25(6):1827–1859, 2004.

[42] B. Uçar and C. Aykanat. Revisiting hypergraph models for sparse matrix partitioning.SIAM Rev., accepted for publication,
2006.

[43] B. Uçar and C. Aykanat. Partitioning sparse matrices for parallel preconditioned iterative methods.SIAM J. Sci. Comput.,
submitted, 2004.

[44] B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution method for parallel sparse matrix-vector multiplication.
SIAM Review, 47(1):67–95, 2005.

[45] C. Walshaw, M. Cross, and K. McManus. Multiphase mesh partitioning.Appl. Math. Model., 25:123–140, 2000.

22

